Step of Proof: fseg_select
11,40
postcript
pdf
Inference at
*
2
1
1
1
2
1
1
I
of proof for Lemma
fseg
select
:
1.
T
: Type
2.
l1
:
T
List
3.
l2
:
T
List
4. ||
l1
||
||
l2
||
5.
i
:
. (
i
< ||
l1
||)
(
l1
[
i
] =
l2
[((||
l2
|| - ||
l1
||)+
i
)])
6.
i
:
7.
i
< ||
l1
||
8.
l1
[
i
] =
l2
[((||
l2
|| - ||
l1
||)+
i
)]
l1
[
i
] =
l2
[(
i
+(||
l2
|| - ||
l1
||))]
latex
by ParallelOp (-1)
latex
.
Definitions
SQType(
T
)
,
{
T
}
,
s
~
t
,
{
x
:
A
|
B
(
x
)}
,
i
j
,
T
,
True
,
A
,
False
,
-
n
,
,
P
&
Q
,
x
:
A
B
(
x
)
,
,
l
[
i
]
,
P
Q
,
t
T
,
#$n
,
n
+
m
,
n
-
m
,
||
as
||
,
s
=
t
,
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
A
B
,
type
List
,
Type
,
a
<
b
Lemmas
guard
wf
,
le
wf
,
squash
wf
,
select
wf
origin